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Abstract. The model sets(also calledcut and project sets), first defined by Yves Meyer in
harmonic analysis, play a central role in quasicrystal modelling. Each of them is defined by using a
cut and project schemecontaining two projectors and a lattice. We present a method which can be
used to study theself-similaritiesof a model set based on the matrices of these projectors in a basis
of the lattice. This method also allows one to study the self-similarities of the diffraction spectrum
of a model set because, generally, the Bragg peaks with intensity above a given threshold also form
a model set. The diffraction pattern corresponding to a quasicrystal is invariant under a finite group
G, and the local structure of the quasicrystal can be described by using a finite union of orbits ofG,
called aG cluster. The neighbours of each atom belong to some orbits ofG, and the quasicrystal
can be regarded as a union of interpenetrating partially occupied translations of the corresponding
G cluster. We present a method to obtain a model set (called theG-model set) by starting from
aG cluster. The experimental diffraction patterns allow one to determine the symmetry group
G, and high-resolution electron microscopy images enable one to choose aG cluster describing
the local structure. The existing computer programs for the cut and project method allow one to
pass directly from the local structure of the quasicrystal to a mathematical model, to compute the
theoretical diffraction spectrum and to compare it with the experimental data.

1. Introduction

After the first discovery of an icosahedral quasicrystal [29] various models were proposed to
describe its structure [4, 12, 13, 15, 27, 33]. They take into consideration either the existence
of well-defined atomic clusters or the good enough agreement of the Penrose pattern with the
experimental data as concerns the orientational and translational properties, Fourier spectrum,
etc. Generally, a quasicrystal is regarded as either a hierarchical packing of atomic clusters
[2,19,20] or as a decorated quasiperiodic tiling obtained by projection [15,16].

In the case of the first class of models, well-defined atomic clusters are packed
quasiperiodically into hierarchical aggregates following some inflation rules. For example,
the basic element of the structure used in the model of Janot and de Boissieu [19, 20], called
pseudo-Mackay icosahedra (PMI) is made of 42 atoms (12 vertices of an icosahedron plus 30
vertices of an icosidodecahedron) and an inner shell of eight or nine atoms distributed on the
sites of a small dodecahedron. The model is generated recursively by starting from a PMI.
At each step the pattern is inflatedτ 3 = 2 +

√
5 times, and each of its points are replaced

by a PMI having the orientation of the starting PMI. In this way succesive generations of
PMI are connected along twofold and threefold bondings. In order to fill the gaps between
these clusters some ‘connecting units’ must be added and this leads to a complicated enough
geometry. These ‘interfaces’ connecting the PMI are pieces of PMI arranged in shells having
the same density as PMI, and they also obey the inflation rules of the PMI.

0305-4470/99/468079+15$30.00 © 1999 IOP Publishing Ltd 8079
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The second class of models is based mainly on the Penrose tiling (also called Amman–
Kramer–Neri tiling). The geometry and the Fourier spectrum of this tiling show that it may
be a good basis for mathematical models. The arthmetical neighbours [21] of each vertex are
distributed on the sites of a regular icosahedron, but the relative frequency of such regular
icosahedrons with almost all the sites occupied is very small, and one cannot distinguish a
relevant generating icosahedral cluster. For example, it is not sufficient to consider the vertex
set of the Penrose tiling as the set of atomic positions in order to obtain a good model. One
possibility to improve the agreement with experimental data is to decorate the tiles by using
atom clusters with icosahedral symmetry [15, 16] or even individual atoms. Recently, Abe
et al [1] discovered by using high-resolution transmission electron microscopy in Zn–Mg–rare-
earth a quasicrystal whose atomic structure is very simple and can be described by decorating
the Penrose tiling by individual atoms. The Penrose tiling whose tile edges are along the
fivefold axes of the icosahedral symmetry is not the only tiling used in icosahedral quasicrystal
modelling. A good approximation of the AlMnSi quasicrystal structure was obtained by Cheng
et al [5] by using a decorated tiling where the tile edges are positioned along the threefold axes.

The purpose of this paper is to present a method which can be used to study the self-
similarities of a model set (section 2), and a method to define model sets starting fromG clusters
(section 3). It is an improved variant of the method used to construct quasiperiodic patterns
obtained whilst in collaboration with Verger-Gaugry [6, 7], and we think that these methods
may lead to a new class of models. The usual construction of the Penrose pattern starts from
a regular icosahedron and the arithmetical neighbours of each vertex are distributed on the
sites of a regular icosahedron. A similar construction performed by starting from a regular
dodecahedron leads [8] to a pattern in which the arithmetical neighbours of each point occupy
some of the vertices of a regular dodecahedron. More generally, if we start from the cluster
formed by the vertices of a regular icosahedron and a regular dodecahedron we get a pattern
in which the arithmetical neighbours of each point are distributed on the sites of a regular
icosahedron and a regular dodecahedron. A similar result is obtained if we add a new shell
formed by the vertices of an icosidodecahedron or arbitrarily modify the radii of the shells.
These icosahedral polyhedrons correspond to some orbits of the icosahedral groupY , and a
quasiperiodic pattern can be obtained by starting from eachY cluster. We think that the huge
number of patterns which can be defined in this way may open the possibility of obtaining
some models directly, without decoration.

Our method works in the case of any finite groupG, and allows us to obtain a large variety
of patterns simultaneously satisfying the following three conditions:

(i) they are quasiperiodic,
(ii) they can be regarded as a packing of clusters,

(iii) they have the desired local structure.

In the case of the pattern obtained by starting from aG clusterC, the arithmetical neighbours
of each pointx are distributed on sites belonging to the translationx + C of C, and hence the
model is a union of partially occupied translations of theG clusterC.

A similar attempt to obtain new models was proposed by Soma and Watanabe [30,31]. In
order to use their approach (presented, up to now, only in a few concrete cases) it is necessary
to first determine orthonormal bases in both the physical and internal space. Our method is
simpler since it contains explicit mathematical expressions applicable to any finite groupG

and to anyG cluster. We use only an orthonormal basis for the physical space and this can be
obtained in a canonical way (theorem 6). In addition, in a natural way our formalism yields
a method which can be used to study the self-similarities of the obtained pattern and of its
diffraction spectrum.
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2. Model sets

Let V be a finite-dimensional vector space,D ⊂ V be a lattice (that is aZ-module generated
by a basis ofV ), andV1, V2 ⊂ V be two subspaces such thatV = V1⊕ V2. The collection of
spaces and mappings

x ← (x, y) : V1
π1←− V1⊕ V2

π2−→ V2 : (x, y)→ y

∪
D

(1)

is called acut and project scheme[22,26] if the following two conditions are satisfied:

(i) π1 restricted toD is injective.
(ii) π2(D) is dense inV2.

It is usually denoted by(V1⊕ V2,D) and allows one to define the pattern

3(K) = {π1(x)|x ∈ D, π2(x) ∈ K} (2)

called amodel set[22,24–26] for any compact setK ⊂ V2 such that

K = int(K) 6= ∅. (3)

Using the mapping

D1 −→ V2 : x 7→ x� = π2((π1|D)−1(x)) (4)

whereD1 = π1(D), we get

D = {(x, x�)|x ∈ D1} (5)

3(K) = {x ∈ D1|x� ∈ K}. (6)

We shall identify the spaceV1 with a spaceRn by choosing a basis{v1, v2, . . . , vn} in
V1, and regard3(K) as a subset ofRn. The projectorsπ1 : V −→ V1 andπ2 : V −→ V2

will be identified with the corresponding mappingsπ1 : V −→ V andπ2 : V −→ V . A
self-similarityof 3(K) is an affine mapping [23]

A : Rn −→ Rn : x 7→ Ax = λx + v (7)

whereλ ∈ R− {0} andv ∈ Rn are such that

x ∈ 3(K) H⇒ Ax ∈ 3(K) (8)

that is,

x ∈ D1

x� ∈ K
}
H⇒

{
Ax ∈ D1

(Ax)� ∈ K. (9)

The numberλ is called ascaling factorof 3(K). If λ 6= 1, then the pointa = v/(1− λ)
having the propertyAa = a is called aninflation centre.

Let {w1, w2, . . . , wm} be a basis ofD, that is, a basis ofV such that

D =
m∑
j=1

Zwj (10)

and letA be the set of all the pairs(λ, λ′) ∈ (R− {0})× [−1, 1] for which the entries of the
matrix ofλπ1 + λ′π2 in the basis{w1, w2, . . . , wm} are integers. We shall prove that the set

I = {λ| there existsλ′ ∈ [−1, 1] such that(λ, λ′) ∈ A}
contains some of the scaling factors of3(K).
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Theorem 1. If (λ, λ′) ∈ A andv ∈ D1 are such that

λ′K + v� ⊂ K (11)

then

A : Rn −→ Rn : x 7→ Ax = λx + v (12)

is a self-similarity of the model set3(K).

Proof. Since the entries ofM = λπ1 + λ′π2 in the basis{w1, w2, . . . , wm} of D are integers
we haveMD ⊂ D, whence

(x, x�) ∈ D H⇒ (λx + v, λ′x� + v�) = M(x, x�) + (v, v�) ∈ D.
Taking into acount the relationλ′K + v� ⊂ K we get

x ∈ D1

x� ∈ K
}
H⇒

{
λx + v ∈ D1

(λx + v)� = λ′x� + v� ∈ K.
that is,

x ∈ 3(K) H⇒ λx + v ∈ 3(K).
�

We say that a setK ⊂ V2 is abalanced setrelative toy ∈ V2 if

{y + α(x − y)|α ∈ [−1, 1]} ⊂ K (13)

for any x ∈ K. Particularly, the projection onV2 of a hypercube fromV is a balanced set
relative to the projection of its centre.

Theorem 2. If K ⊂ V2 is a balanced set relative to a pointy� ∈ π2(D) then any element of
I is a scaling factor of3(K).

Proof. Let

A : V1 −→ V1 Ax = y + λ(x − y).
Since

(Ax)� = y� + λ′(x� − y�) ∈ K
for anyx ∈ 3(K), it follows thatAx = y + λ(x − y) = λx + (1− λ)y is a self-similarity of
3(K). �

In the case of certain model sets, the points of the diffraction spectrum with a brightness
above a given threshold also form a model set. Thus, the method presented may allow us to
determine certain self-similarities of the ‘bright’ part of the diffraction spectrum of model sets.
Let (V1⊕V2,D) be a cut and project scheme,D∗ be the dual lattice ofD, and letD∗1 = π1(D∗).
Assuming that(V1⊕ V2,D∗) is also a cut and project scheme, we shall consider the mapping

D∗1 −→ V2 : x 7→ xG = π2((π1|D∗)−1(x)). (14)

If K is Riemann integrable, then [17,18] the measure

νK =
∑

x∈3(K)
δx (15)

has a unique autocorrelationγK , and the atomic part of the Fourier transform ofγK is

γ̂ atK =
∑
ξ∈D∗1
|cξ |2δξ (16)
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wherecξ = 1̂K(−ξG), and 1K is the characteristic function ofK. More than that, for a suitable
cut-off α,

γ̂ atK,α =
∑

ξ∈D∗1, |cξ |>α
|cξ |2δξ (17)

gives [11,17] a good description of the diffraction spectrum in the case of certain quasicrystals
if the terms are interpreted as describing spots with an intensity proportional to|cξ |2.

Let {w′1, w′2, . . . , w′m} be a basis of the latticeD∗, A∗ be the set of all the pairs
(λ, λ′) ∈ (R − {0}) × [−1, 1] for which the entries of the matrix ofλπ1 + λ′π2 in the basis
{w′1, w′2, . . . , w′m} are integers, and let

I∗ = {λ| there existsλ′ ∈ [−1, 1] such that(λ, λ′) ∈ A∗}.
Choosingα ∈ (0,∞) such that

�α = {ξ ∈ V2||1̂K(−ξ)| > α} 6= ∅ (18)

from theorem 1 we get the following result.

Theorem 3. If (λ, λ′) ∈ A∗ andv ∈ D∗1 are such that

λ′�α + vG ⊂ �α (19)

then

A : Rn −→ Rn : x 7→ Ax = λx + v (20)

is a self-similarity of the support

3(K)∗α = {ξ ∈ D∗1||cξ | > α} (21)

of γ̂ atK,α, that is,

ξ ∈ 3(K)∗α H⇒ Aξ = λξ + v ∈ 3(K)∗α. (22)

Example. Let τ = (1 +
√

5)/2, τ ′ = (1− √5)/2, and let us consider the cut and project
scheme

x1← (x1, x2) : V1
π1←− R2 π2−→ V2 : (x1, x2)→ x2

∪
D

(23)

whereV1 = R ≡ {(x1, 0)|x1 ∈ R}, V2 = R ≡ {(0, x2)|x2 ∈ R}, and

D = {(j +mτ, j +mτ ′)|j,m ∈ Z} = Z(1, 1) + Z(τ, τ ′).

In this caseD1 = {(j +mτ, 0) | j,m ∈ Z } = Z +Zτ , and(j +mτ)� = j +mτ ′. The vectors
w1 = (1, 1) andw2 = (τ, τ ′) form a basis ofD, and the matrices ofπ1 andπ2 in the basis
{w1, w2} are

π1 =M((5−
√

5)/10, (5 +
√

5)/10,
√

5/5)

π2 =M((5 +
√

5)/10, (5−
√

5)/10,−
√

5/5)

where

M(α, β, γ ) =
(
α γ

γ β

)
.
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Since the matrix ofλπ1 + λ′π2 in the basis{w1, w2} has integer entries if and only if

j = λ5−√5

10
+ λ′

5 +
√

5

10
∈ Z

m = λ
√

5

5
− λ′
√

5

5
∈ Z

l = λ5 +
√

5

10
+ λ′

5−√5

10
∈ Z

we get

I = {j +mτ |j,m ∈ Z, j +mτ ′ ∈ [−1, 1]}.
Let r ∈ (0,∞), and let

3([−r, r]) = {j +mτ ∈ D1|j +mτ ′ ∈ [−r, r]}
be the model set corresponding to the windowK = [−r, r]. For anyλ ∈ I and anyv ∈ D1

such that|v�| 6 (1− |λ�|)r the transformation

R −→ R : x 7→ λx + v

is a self-similarity of3([−r, r]).
The dual lattice ofD isD∗ = Zw′1 + Zw′2, where

w′1 =
(

1

τ + 2
,
τ + 1

τ + 2

)
w′2 =

(
τ

τ + 2
,
−τ
τ + 2

)
and(V1 ⊕ V2,D∗) is also a cut and project scheme. Since the matrices ofπ1 andπ2 in the
basis{w′1, w′2} coincide with the corresponding matrices in the basis{w1, w2}, it follows that
I∗ = I.

In this case, the Fourier transform̂1[−r,r] of 1[−r,r] is

1̂[−r,r](ξ) = sin(2πrξ)

πξ

and the maximal value of|1̂[−r,r](ξ)| is 2r = limξ→0 |1̂[−r,r](ξ)|. For anyβ in a certain
neighbourhood of 0 andα = 1̂[−r,r](β) we get�α = [−β, β]. In this case, anyλ ∈ I∗ is a
scaling factor of the diffraction spectrum of3([−r, r]) if we take into consideration only the
spotsξ ∈ D∗1 with |cξ | > α.

We think that similar results can be obtained for the three-dimensional Penrose tiling [9],
and in the case of many other known patterns.

3. G-model sets

In this section we present the construction ofG-model sets. Let

{g : En −→ En|g ∈ G}
be an orthogonalR-irreducible faithful representation of a finite groupG in the usualn-
dimensional Euclidean spaceEn = (Rn, 〈, 〉), and letS ⊂ En be a finite non-empty set
which does not contain the null vector. Any finite union of orbits ofG is called aG cluster.
Particularly,

C =
⋃
r∈S
Gr ∪

⋃
r∈S
G(−r) = {e1, e2, . . . , ek,−e1,−e2, . . . ,−ek} (24)
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is theG-cluster symmetric with respect to the origin generated byS. For eachg ∈ G, there
exist the numberssg1 , s

g

2 , . . . , s
g

k ∈ {−1; 1} and a permutation of the set{1, 2, . . . , k} also
denoted byg such that

gej = sgg(j)eg(j) (25)

for anyj ∈ {1, 2, . . . , k}.
If we start from the representation

a(x, y, z) =
(

1

2
x − τ

2
y +

τ − 1

2
z,
τ

2
x +

τ − 1

2
y − 1

2
z,
τ − 1

2
x +

1

2
y +

τ

2
z

)
b(x, y, z) = (−x,−y, z)

(26)

of the icosahedral groupY = 235= 〈a, b|a5 = b2 = (ab)3 = e〉 and the setS = {(1, 0, τ )}
thenC = {e1, e2, . . . , e6,−e1,−e2, . . . ,−e6}, where

e1 = (1, 0, τ ) e3 = (τ, 1, 0) e5 = (−1, 0, τ )

e2 = (τ,−1, 0) e4 = (0, τ,1) e6 = (0,−τ, 1).
(27)

Forg = a andg = b relation (25) can be written as

a =
(
e1 e2 e3 e4 e5 e6

e1 e3 e4 e5 e6 e2

)
b =

(
e1 e2 e3 e4 e5 e6

e5 −e2 −e3 e6 e1 e4

)
(28)

and the correspondingY -model set is the usual three-dimensional Penrose pattern [9]. Many
other concrete illustrations of our results can be found in [7,8].

Theorem 4 ([6–8]). The groupG can be identified with the group of permutations

{C −→ C : r 7→ gr|g ∈ G}
and the formula

g(x1, . . . , xk) = (sg1xg−1(1), s
g

2xg−1(2), . . . , s
g

k xg−1(k)) (29)

defines an orthogonal representation ofG in Ek.

Theorem 5 ([6–8]). The subspaces

E‖k = {(〈r, e1〉, 〈r, e2〉, . . . , 〈r, ek〉)|r ∈ En} (30)

E⊥k =
{
(x1, x2, . . . , xk) ∈ Ek

∣∣∣∣ k∑
i=1

xiei = 0

}
(31)

ofEk areG-invariant, orthogonal, andEk = E‖k ⊕ E⊥k .

Let u1 = (1, 0, 0, . . . ,0), u2 = (0, 1, 0, . . . ,0), . . . , un = (0, . . . ,0, 1) be the canonical
basis ofEn, and let

ej = (ej1, ej2, . . . , ejn) (32)

for anyj ∈ {1, 2, . . . , k}.
Theorem 6 ([6–8]). The vectorsv′1, v

′
2, . . . , v

′
n, where

v′i = (e1i , e2i , . . . , eki) (33)

form an orthogonal basis ofE‖k, and

‖v′1‖ = ‖v′2‖ = · · · = ‖v′n‖. (34)
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The orthonormal basis ofE‖k corresponding to{v′1, v′2, . . . , v′n} is formed by the vectors

v1 = %v′1 v2 = %v′2 . . . vn = %v′n (35)

where% = 1/‖v′1‖.
Theorem 7 ([6–8]). The representation ofG in E‖k is equivalent to the representation ofG in
En, and the isomorphism

4 : En −→ E‖k 4r = (%〈r, e1〉, %〈r, e2〉, . . . , %〈r, ek〉) (36)

having the property4ui = vi allows us to identify the two spaces.

Theorem 8 ([6–8]). The mappingπ‖ : Ek −→ Ek

π‖(x1, . . . , xk) =
(
%2

k∑
i=1

〈e1, ei〉xi, . . . , %2
k∑
i=1

〈ek, ei〉xi
)

(37)

is the orthogonal projector corresponding to the subspaceE‖k.

Theorem 9 ([6–8]). TheZ-module

L = κZk ⊂ Ek (38)

whereκ = 1/%, isG-invariant, and in view of the identification4 : En −→ E‖k, we have

π‖L =
k∑
i=1

Zei . (39)

Generally,

E‖k
π‖←− E‖k ⊕ E⊥k

π⊥−→ E⊥k
∪
L

(40)

whereπ⊥ = 1− π‖, is not a cut and project scheme since, generally,π‖ restricted toL is not
injective.

Theorem 10 ([10,28]).AnyZ-moduleL ⊂ Rl is the direct sum of a latticeLd of rankd and
aZ-moduleLs dense in a vector subspace of dimensions, whered + s is the dimension of the
subspace generated byL in Rl .

TheZ-moduleL⊥ = π⊥(L) is the direct sumL⊥ = L⊥s ⊕ L⊥d of a latticeL⊥d of rankd
and aZ-moduleL⊥s dense in a subspaceV2 ⊂ E⊥k of dimensions, whered + s = dimE⊥k . In
this decomposition the spaceV2 is uniquely determined.

Theorem 11. The spaceV2 is aG-invariant subspace ofE⊥k .

Proof. We have to prove thaty ∈ V2 H⇒ g(y) ∈ V2, for any g ∈ G. Since
π⊥(g(x)) = g(π⊥x) for any x ∈ Ek, it follows that L⊥ is aG-invariantZ-module. If
y ∈ V2 then there exists a sequence(xj )j>0 ⊂ L⊥ such thaty = limj→∞ xj . Sinceg is an
isometry andg(xj ) ∈ L⊥ for anyj ∈ N, it follows thatg(y) = limj→∞ g(xj ) ∈ V2. �

This theorem shows that a decomposition of the representation ofG in E⊥k into R-
irreducible representations may help us to determine the subspaceV2.

Let V1 = E‖k, and let

W = {x ∈ E⊥k |〈x, y〉 = 0 for anyy ∈ V2} (41)
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be the orthogonal ofV2 in E⊥k . For eachx ∈ Ek there existx‖ ∈ V1, x ′ ∈ V2 andx ′′ ∈ W
uniquely determined such thatx = x‖ + x ′ + x ′′. The mappings

π ′ : Ek −→ Ek : x 7→ x ′ π ′′ : Ek −→ Ek : x 7→ x ′′

are the orthogonal projectors corresponding to the subspacesV2 andW . Letε1 = (1, 0, . . . ,0),
ε2 = (0, 1, 0, . . . ,0), . . ., εk = (0, 0, . . . ,0, 1) be the canonical basis ofEk.

Theorem 12. The matrix ofπ ′′ in the basis{ε1, ε2, . . . , εk} has rational entries.

Proof. Let

π ′′ =


d11 d12 . . . d1k

d21 d22 . . . d2k

. . . . . . . . . . . .

dk1 dk2 . . . dkk


be the matrix ofπ ′′ in the basis{ε1, ε2, . . . , εk}, that is,π ′′εj =

∑k
i=1 dij εi . The matrixπ ′′ is

symmetric

dij = 〈π ′′εj , εi〉 = 〈π ′′εj , π ′′εi〉 = 〈εj , π ′′εi〉 = dji .
We start by proving that the ratio of any two non-zero entries lying on the same column ofπ ′′

is a rational number. In order to simplify the notations we prove that our statement is valid for
the first column, but our arguments work for any column.

Let us suppose that the first column contains twoQ-linearly independent entries. If this
number is larger then the proof is similar. In this case, there exist twoQ-linearly independent
numbersω andν and the integersγ, α1, β1, . . . , αk, βk such that

dj1 = αj

γ
ω +

βj

γ
ν

for anyj ∈ {1, 2, . . . , k}.
From the relationπ ′′ ◦ π ′′ = π ′′ we get

d11 = (d11)
2 + (d21)

2 + · · · + (dk1)2

whenced11 6= 0. Thus, we can assume thatω = γ d11. It follows:

π ′′ε1 = ω

γ
(ε1 + α2ε2 + · · · + αkεk) +

ν

γ
(β2ε2 + · · · + βkεk). (42)

The equalityπ ′′ ◦ π ′′ = π ′′ allows us to write this relation in the form

π ′′ε1 = ω

γ
π ′′(ε1 + α2ε2 + · · · + αkεk) +

ν

γ
π ′′(β2ε2 + · · · + βkεk)

or

(ω − γ )π ′′ε1 + ωπ ′′(α2ε2 + · · · + αkεk) + νπ ′′(β2ε2 + · · · + βkεk) = 0.

Let us first consider the case when the numbersω − γ , ω andν areQ-linearly independent.
In view of Kronecker’s theorem ([24], p 286), for anyδ > 0 there exist a real numbert and
the integersη1, η2, η3 such that

|t (ω − γ )− η1| 6 δ |tω − η2| 6 δ |tν − η3| 6 δ.
This means that there exists the vector

y = κ[η1ε1 + η2(α2ε2 + · · · + αkεk) + η3(β2ε2 + · · · + βkεk)] ∈ L
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such that

‖π ′′y‖ = κ‖(η1− t (ω − γ ))π ′′ε1 + (η2 − tω)π ′′(α2ε2 + · · · + αkεk)
+(η3− tν)π ′′(β2ε2 + · · · + βkεk)‖

6 κδ(‖π ′′ε1‖ + ‖π ′′(α2ε2 + · · · + αkεk)‖ + ‖π ′′(β2ε2 + · · · + βkεk)‖).
Sinceπ ′′(L) ⊂ W is a discrete set, we must haveπ ′′y = 0 for anyδ small enough. This is
possible only if

π ′′ε1 = 0

π ′′(α2ε2 + · · · + αkεk) = 0

π ′′(β2ε2 + · · · + βkεk) = 0.

(43)

Since (43) contradicts (42), the numbersω−γ, ω, ν cannot beQ-linearly independent. There
exist the integersζ , ξ andθ such that

ω − γ = ζ

θ
ω +

ξ

θ
ν

and hence,

ωπ ′′(ζ ε1 + θα2ε2 + · · · + θαkεk) + νπ ′′(ξε1 + θβ2ε2 + · · · + θβkεk) = 0.

In view of Kronecker’s theorem, for anyδ > 0, there exist a real numbert and the integers
µ1, µ2, such that

|tω − µ1| 6 δ |tν − µ2| 6 δ.
These relations show that there exists

y = κ[µ1(ζ ε1 + θα2ε2 + · · · + θαkεk) +µ2(ξε1 + θβ2ε2 + · · · + θβkεk)] ∈ L
such that

‖π ′′y‖ 6 κδ(‖π ′′(ζ ε1 + θα2ε2 + · · · + θαkεk)‖ + ‖π ′′(ξε1 + θβ2ε2 + · · · + θβkεk)‖).
Sinceπ ′′(L) ⊂ W is a discrete set, we must haveπ ′′y = 0 for anyδ small enough. This is
only possible if

π ′′(ζ ε1 + θα2ε2 + · · · + θαkεk) = 0

π ′′(ξε1 + θβ2ε2 + · · · + θβkεk) = 0.

If we multiply scalarly the second relation byε1 we get

ξω + θβ2(ωα2 + νβ2) + · · · + θβk(ωαk + νβk) = 0

that is,

ω(ξ + θα2β2 + · · · + θαkβk) + θν[(β2)
2 + · · · + (βk)2] = 0.

Sinceω andν areQ-linearly independent, we obtain

(β2)
2 + · · · + (βk)2 = 0

that is,

β2 = β3 = · · · = βk = 0.

It follows thatdj1 = αjω for anyj ∈ {1, 2, . . . , k}, and this result contradicts the assumption
that the first column contains twoQ-linearly independent entries. Hence, the ratio of any two
non-zero entries lying on the same column is a rational number. Since our matrix is symmetric,
the ratio of any two non-zero entries lying on the same row is also a rational number. This is
possible only ifπ ′′ is the product of a matrix with rational entriesM and a real numberω, that
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is, π ′′ = ωM. The equalityπ ′′ ◦ π ′′ = π ′′ shows that there exists a rational numberα such
thatω2 = αω, and henceω is also a rational number. �

Let

V = V1⊕ V2 D = p(L) (44)

where

p : Ek −→ Ek : x 7→ x‖ + x ′ (45)

and let

π1 : V −→ V : x 7→ x‖ π2 : V −→ V : x 7→ x ′. (46)

Theorem 13. For anyG clusterC the collection of spaces and mappings

V1
π1←− V1⊕ V2

π2−→ V2

∪
D

(47)

is a cut and project scheme. In addition,

π1(D) =
k∑
j=1

Zej . (48)

Proof. We have to prove thatD is a lattice inV , the restriction ofπ1 to D is injective, and
π2(D) is dense inV2.

Sincep = 1− π ′′ has rational entries and its rank coincides with the dimension ofV , it
follows thatD = p(L) is a lattice inV .

From the relationπ2(D) = π ′(p(L)) = π ′(L) and the definition ofV2, it follows that
π2(D) is dense inV2.

It remains to prove thatπ1 restricted toD is injective. For this it is sufficient to prove that
Ker(π1|D) = {0} and this is equivalent to proving that Ker(π‖|L) ⊂ W . We have to analyse
the case Ker(π‖|L) 6= {0}. Let x ∈ L− {0} be such thatπ‖x = 0. The relation Kerπ‖ = E⊥k
shows thatx ∈ L∩E⊥k . For anyy ∈ L the points(z1, z2, . . . , zk) ∈ Ek satisfying the equation

x1(z1− y1) + x2(z2 − y2) + · · · + xk(zk − yk) = 0 (49)

form the hyperplaneHy orthogonal tox passing throughy. The hyperplaneHy intersects
the one-dimensional subspaceRx = {αx|α ∈ R} at a point corresponding toα =
(x1y1 + · · · + xkyk)/(x2

1 + · · · + x2
k ) = 〈x, y〉/‖x‖2.

Since〈x, y〉 ∈ κ2Z, the minimal distance between two distinct hyperplanes of the family
of parallel hyperplanes{Hy | y ∈ L} is κ2/‖x‖. The unionH = ⋃

y∈LHy of hyperplanes
orthogonal tox ∈ E⊥k contains theZ-moduleL⊥ = π⊥(L). We prove thatx ∈ W , since in
the contrary case,V2 ∩ L⊥ cannot be dense inV2. Indeed, assuming thatx 6∈ W there exists
z ∈ V2 such that〈x, z〉 6= 0. In this case the one-dimensional subspaceRz = {αz|α ∈ R} of
V2 is not contained inH . The intersectionH ∩ Rz is a discrete set, and for anyu ∈ Rz −H
the distanceδ betweenu andH is strictly positive, and hence the open ball of centreu and
radiusδ does not contain any element ofL⊥. It remains thatx ∈ W. �

A model set obtained by using a cut and project scheme(V1⊕V2,D) defined by aG cluster
is called aG-model set.

Example. The relations

a(x, y) = (cx − sy, sx + cy) b(x, y) = (x,−y) (50)
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wherec = cos(π/5) = (1 +
√

5)/4, s = sin(π/5) =
√

5−√5/(2
√

2) define the usual
two-dimensional representation of the dihedral group

D10 = 〈a, b|a10 = b2 = (ab)2 = e〉.
Let c′ = cos(2π/5) = (

√
5− 1)/4, s ′ = sin(2π/5) =

√
5 +
√

5/(2
√

2). TheD10-cluster
generated by the setS = {(1, 0)}

C = D10(1, 0) = {e1, e2, e3, e4, e5,−e1,−e2,−e3,−e4,−e5}
wheree1 = (1, 0), e2 = (c′, s ′), e3 = (−c, s), e4 = (−c,−s), e5 = (c′,−s ′), defines the
orthogonal representation

a(x1, x2, x3, x4, x5) = (−x3,−x4,−x5,−x1,−x2)

b(x1, x2, x3, x4, x5) = (x1, x5, x4, x3, x2)
(51)

of D10 in E5.
The vectorsv1 = %(1, c′,−c,−c, c′), v2 = %(0, s ′, s,−s,−s ′), where% = √2/5, form

an orthonormal basis of theD10-invariant space

E‖5 = {(〈r, e1〉, 〈r, e2〉, . . . , 〈r, e5〉)|r ∈ E2} (52)

and the isometry (which is an isomorphism of representations)

4 : E2 −→ E‖5 : r 7→ (%〈r, e1〉, %〈r, e2〉, . . . , %〈r, e5〉) (53)

with the property4(1, 0) = v1, 4(0, 1) = v2 allows us to identify the two spaces.
In this case the orthogonalE⊥5 of E‖5 contains aD10-invariant subspace, namely, the space

{(x1, x2, . . . , x5) ∈ E5|x1 = x2 = · · · = x5}. The spaceE⊥5 can be decomposed into an
orthogonal sum of twoD10-invariant subspaces. We shall denote the corresponding projectors
by π⊥1 andπ⊥2 . The matrices of these projectors in the canonical basis ofE6 are

π‖ =M( 2
5, (
√

5− 1)/10,−(
√

5 + 1)/10)

π⊥1 =M( 2
5,−(
√

5 + 1)/10, (
√

5− 1)/10)
π⊥2 =M( 1

5,
1
5,

1
5)

(54)

where

M(α, β, γ ) =


α β γ γ β

β α β γ γ

γ β α β γ

γ γ β α β

β γ γ β α

 . (55)

Letκ = 1/% and letL = κZ5. The pair(E‖5⊕E⊥5 ,L) is not a cut and project scheme since
π‖x = 0 for anyx = (x1, x2, . . . , x5) ∈ L such thatx1 = x2 = · · · = x5. We use theorem 13
in order to obtain a cut and project scheme. In this case

V1 = E‖5 V2 = E⊥5,1 V = V1⊕ V2 W = E⊥5,2 (56)

p = π‖ + π⊥1 D = p(L) π1x = π‖x π2x = π⊥1 x (57)

and

D =
4∑
j=1

Zwj

where

w1 = ( 4
5,− 1

5,− 1
5,− 1

5,− 1
5) w2 = (− 1

5,
4
5,− 1

5,− 1
5,− 1

5)

w3 = (− 1
5,− 1

5,
4
5,− 1

5,− 1
5) w4 = (− 1

5,− 1
5,− 1

5,
4
5,− 1

5).
(58)
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From theorem 13 it follows that(V1⊕ V2,D) is a cut and project scheme. Since the matrices
corresponding toπ1 : V −→ V , π2 : V −→ V in the basis{w1, w2, w3, w4} are

π1 =M′((5−
√

5)/10, (5 +
√

5)/10,
√

5/5)

π2 =M′((5 +
√

5)/10, (5−
√

5)/10,−
√

5/5)

where

M′(α, β, γ ) =


α γ 0 −γ
0 β γ −γ
−γ γ β 0
−γ 0 γ α

 (59)

the entries of the matrixλπ1 + λ′π2 are integers if and only if

j = λ5−√5

10
+ λ′

5 +
√

5

10
∈ Z

l = λ5 +
√

5

10
+ λ′

5−√5

10
∈ Z

m = λ
√

5

5
− λ′
√

5

5
∈ Z.

It follows

m = l − j λ = l + j

2
+
l − j

2

√
5 λ′ = l + j

2
− l − j

2

√
5 (60)

whence

I = {j +mτ |(j,m) ∈ Z2, j +mτ ′ ∈ [−1, 1]}. (61)

It depends on the window we choose if a certain element ofI is or is not a scaling factor for a
D10-model set defined by using the cut and project scheme(V1⊕ V2,D).

The dual lattice ofD isD∗ =∑4
j=1Zw′j , where

w′1 = (1, 0, 0, 0,−1) w′2 = (0, 1, 0, 0,−1)

w′3 = (0, 0, 1, 0,−1) w′4 = (0, 0, 0, 1,−1).

Since the matrices ofπ1 andπ2 in the basis{w′1, w′2, w′3, w′4} are

π1 =M′′((5−
√

5)/10, (5 +
√

5)/10,
√

5/5)

π2 =M′′((5 +
√

5)/10, (5−
√

5)/10,−
√

5/5)

where

M′′(α, β, γ ) =


α 0 −γ −γ
γ β γ 0
0 γ β γ

−γ −γ 0 α

 (62)

we getI∗ = I. An element ofI∗ may be a scaling factor for the ‘bright’ part of the diffraction
spectrum of a model set defined by using the cut and project scheme(V1⊕ V2,D) depending
on the window and the threshold of brightness we choose.
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4. Conclusions

In the case of any finite groupG we can obtain, in an explicit way, an infinite number of
quasiperiodic patterns by using the infinite number of the correspondingG clusters. In
order to obtain a mathematical model for a real quasicrystal it is sufficient to determine
the corresponding symmetry groupG and to approximate the local structure by using a
G cluster. One can try to find some self-similarities of the model and to construct adapted
wavelets bases [3,14] useful in the description of physical properties. The existing computer
programs for the cut and project method [32] allow one to compare the obtained model with
the experimental data. If the agreement is not acceptable one has the possibility to search for
a more suitableG cluster describing the local structure.

A quasiperiodic pattern generated by mixing lattices derived from a dodecahedral
star and an icosahedral star was recently presented by Soma and Watanabe [31]. It is
obtained by projection from a 16-dimensional lattice. The family of two-shellY -clusters
Y {(α, α, α), (1, 0, τ )} (the dodecahedronY (α, α, α) and the icosahedronY (1, 0, τ ), whereα
is a real positive parameter) defined by using the representation (26) of the icosahedral group
Y allows us to obtain a large class of similar patterns. They seem to be of interest for the
icosahedral quasicrystal modelling, but following the suggestions of the Janot–de Boissieu
model, a better choice seems to be the patterns defined by the family of three-shellY -clusters
Y {(α, α, α), (1, 0, τ ), (β,0, 0)} (a dodecahedron, an icosahedron and an icosidodecahedron)
depending on two real positive parameters. It is not the purpose of this paper to analyse these
concrete patterns.

A real quasicrystal contains several sorts of atoms and it is very difficult to obtain a
mathematical model describing the atomic positions. We think that our results offer the
mathematical basis for a possible new approach to this open problem.
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