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Abstract. The model setqalso calledcut and project sejs first defined by Yves Meyer in
harmonic analysis, play a central role in quasicrystal modelling. Each of them is defined by using a
cut and project schenmeontaining two projectors and a lattice. We present a method which can be
used to study theelf-similaritiesof a model set based on the matrices of these projectors in a basis
of the lattice. This method also allows one to study the self-similarities of the diffraction spectrum
of amodel set because, generally, the Bragg peaks with intensity above a given threshold also form
amodel set. The diffraction pattern corresponding to a quasicrystal is invariant under a finite group
G, and the local structure of the quasicrystal can be described by using a finite union of ofhits of
called aG cluster The neighbours of each atom belong to some orbits,aind the quasicrystal

can be regarded as a union of interpenetrating partially occupied translations of the corresponding
G cluster. We present a method to obtain a model set (called@theodel sétby starting from

a G cluster. The experimental diffraction patterns allow one to determine the symmetry group
G, and high-resolution electron microscopy images enable one to cha@sduster describing

the local structure. The existing computer programs for the cut and project method allow one to
pass directly from the local structure of the quasicrystal to a mathematical model, to compute the
theoretical diffraction spectrum and to compare it with the experimental data.

1. Introduction

After the first discovery of an icosahedral quasicrystal [29] various models were proposed to
describe its structure [4, 12,13, 15, 27, 33]. They take into consideration either the existence
of well-defined atomic clusters or the good enough agreement of the Penrose pattern with the
experimental data as concerns the orientational and translational properties, Fourier spectrum,
etc. Generally, a quasicrystal is regarded as either a hierarchical packing of atomic clusters
[2,19,20] or as a decorated quasiperiodic tiling obtained by projection [15, 16].

In the case of the first class of models, well-defined atomic clusters are packed
quasiperiodically into hierarchical aggregates following some inflation rules. For example,
the basic element of the structure used in the model of Janot and de Boissieu [19, 20], called
pseudo-Mackay icosahedra (PMI) is made of 42 atoms (12 vertices of an icosahedron plus 30
vertices of an icosidodecahedron) and an inner shell of eight or nine atoms distributed on the
sites of a small dodecahedron. The model is generated recursively by starting from a PMI.
At each step the pattern is inflated = 2 + /5 times, and each of its points are replaced
by a PMI having the orientation of the starting PMI. In this way succesive generations of
PMI are connected along twofold and threefold bondings. In order to fill the gaps between
these clusters some ‘connecting units’ must be added and this leads to a complicated enough
geometry. These ‘interfaces’ connecting the PMI are pieces of PMI arranged in shells having
the same density as PMI, and they also obey the inflation rules of the PMI.

0305-4470/99/468079+15$30.00 © 1999 IOP Publishing Ltd 8079
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The second class of models is based mainly on the Penrose tiling (also called Amman-—
Kramer—Neri tiling). The geometry and the Fourier spectrum of this tiling show that it may
be a good basis for mathematical models. The arthmetical neighbours [21] of each vertex are
distributed on the sites of a regular icosahedron, but the relative frequency of such regular
icosahedrons with almost all the sites occupied is very small, and one cannot distinguish a
relevant generating icosahedral cluster. For example, it is not sufficient to consider the vertex
set of the Penrose tiling as the set of atomic positions in order to obtain a good model. One
possibility to improve the agreement with experimental data is to decorate the tiles by using
atom clusters with icosahedral symmetry [15, 16] or even individual atoms. Recently, Abe
etal[1] discovered by using high-resolution transmission electron microscopy in Zn—Mg-rare-
earth a quasicrystal whose atomic structure is very simple and can be described by decorating
the Penrose tiling by individual atoms. The Penrose tiling whose tile edges are along the
fivefold axes of the icosahedral symmetry is not the only tiling used in icosahedral quasicrystal
modelling. A good approximation of the AIMnSi quasicrystal structure was obtained by Cheng
et al[5] by using a decorated tiling where the tile edges are positioned along the threefold axes.

The purpose of this paper is to present a method which can be used to study the self-
similarities of amodel set (section 2), and a method to define model sets starting Goisters
(section 3). Itis an improved variant of the method used to construct quasiperiodic patterns
obtained whilst in collaboration with Verger-Gaugry [6, 7], and we think that these methods
may lead to a new class of models. The usual construction of the Penrose pattern starts from
a regular icosahedron and the arithmetical neighbours of each vertex are distributed on the
sites of a regular icosahedron. A similar construction performed by starting from a regular
dodecahedron leads [8] to a pattern in which the arithmetical neighbours of each point occupy
some of the vertices of a regular dodecahedron. More generally, if we start from the cluster
formed by the vertices of a regular icosahedron and a regular dodecahedron we get a pattern
in which the arithmetical neighbours of each point are distributed on the sites of a regular
icosahedron and a regular dodecahedron. A similar result is obtained if we add a new shell
formed by the vertices of an icosidodecahedron or arbitrarily modify the radii of the shells.
These icosahedral polyhedrons correspond to some orbits of the icosahedral genga
quasiperiodic pattern can be obtained by starting from &acluster. We think that the huge
number of patterns which can be defined in this way may open the possibility of obtaining
some models directly, without decoration.

Our method works in the case of any finite gra@pand allows us to obtain a large variety
of patterns simultaneously satisfying the following three conditions:

(i) they are quasiperiodic,
(ii) they can be regarded as a packing of clusters,
(i) they have the desired local structure.

In the case of the pattern obtained by starting frot @lusterC, the arithmetical neighbours
of each pointx are distributed on sites belonging to the translationC of C, and hence the
model is a union of partially occupied translations of thelusterC.

A similar attempt to obtain new models was proposed by Soma and Watanabe [30,31]. In
order to use their approach (presented, up to now, only in a few concrete cases) it is necessary
to first determine orthonormal bases in both the physical and internal space. Our method is
simpler since it contains explicit mathematical expressions applicable to any finite Group
and to anyG cluster. We use only an orthonormal basis for the physical space and this can be
obtained in a canonical way (theorem 6). In addition, in a natural way our formalism yields
a method which can be used to study the self-similarities of the obtained pattern and of its
diffraction spectrum.
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2. Model sets

Let V be a finite-dimensional vector spad,C V be a lattice (that is @-module generated
by a basis o), andVy, Vo, C V be two subspaces such that= Vi @ V,. The collection of
spaces and mappings

x < (x,y) W Vil Vie Vs LN Voi (x,y)—y
U 1)
D

is called acut and project schem@2, 26] if the following two conditions are satisfied:

(i) 1 restricted taD is injective.
(i) mo(D) is dense inV,.

It is usually denoted byV; & V,, D) and allows one to define the pattern

A(K) = {m1(x)|x € D, m2(x) € K} 2)
called amodel se{22, 24—-26] for any compact sé& c V, such that

K =int(K) # 0. ®3)
Using the mapping

D1 — Vaix = x° = m((milp) " (x)) (4)

whereD; = 1(D), we get
D = {(x, x%)|x € Dy} (5)
A(K) = {x € D1]x° € K}. (6)
We shall identify the spac¥; with a spaceR” by choosing a basi&v, v, ..., v,} Iin
Vi1, and regard\ (K) as a subset dR”. The projectorsr; : V — Vi andny 1V — V>

will be identified with the corresponding mappings : V — V andn, : V — V. A
self-similarityof A (K) is an affine mapping [23]

AR —R":x+—> Ax =Ax +v @)
wherei € R — {0} andv € R" are such that
x € A(K) = Ax € A(K) (8)

that is,

x €D Ax € D1 )
x*ekK (Ax)® € K.

The numben is called ascaling factorof A(K). If A # 1, then the point = v/(1 — 1)
having the propertyia = « is called arinflation centre.

Let {w1, wo, ..., w,} be a basis oD, that is, a basis o¥ such that
j=1

and letA be the set of all the pairg., ') € (R — {0}) x [—1, 1] for which the entries of the
matrix of Aty + A7, in the basiqws, wo, ..., w,} are integers. We shall prove that the set

T = {A| there exists.’ € [—1, 1] such thaix, 1) € A}

contains some of the scaling factors/ofK).
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Theorem 1. If (A, 1)) € Aandv € D; are such that

VK +v° C K (11)
then

A'R'"—>R'ix—> Ax =Ax +v (12)
is a self-similarity of the model sét(K).

Proof. Since the entries a¥f = Am; + A'75 in the basiqwi, wo, ..., w,} of D are integers
we haveM D C D, whence

(x,x) €D = (Ax+v,Ax°+0°) = M(x,x°) + (v,v°) € D.
Taking into acount the relatiod K +v°® C K we get

x €Dy — Ax+veD;
x°eK (Ax +v)° =21x°+1° € K.

that is,
x € A(K) = rx +v e A(K).

We say that a set’ C V-, is abalanced setelative toy € V5 if
{yrax —ylee[-1L1} C K 13)

for anyx € K. Particularly, the projection o, of a hypercube fronV is a balanced set
relative to the projection of its centre.

Theorem 2. If K C V; is a balanced set relative to a point € 72(D) then any element of
7 is a scaling factor ofA (K).

Proof. Let
AV — VWV Ax =y+Ai(x —y).
Since
(Ax)* =y +1(x*=y) e K
for anyx € A(K), it follows thatAx = y + A(x — y) = Ax + (1 — )y is a self-similarity of
A(K). O

In the case of certain model sets, the points of the diffraction spectrum with a brightness
above a given threshold also form a model set. Thus, the method presented may allow us to
determine certain self-similarities of the ‘bright’ part of the diffraction spectrum of model sets.
Let (V1® V,, D) be a cut and project scheni®; be the dual lattice aP, and letD] = 1 (D*).
Assuming thatVy, & V,, D*) is also a cut and project scheme, we shall consider the mapping

Df — Vaix b x® = m((ilp) M) (14)
If K is Riemann integrable, then [17, 18] the measure
Vg = Z (Sx (15)
xeA(K)

has a unique autocorrelatigf, and the atomic part of the Fourier transformygfis

PR =) leel’s (16)

£eD;
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wherec; = 1x (—&9), and Xk is the characteristic function &. More than that, for a suitable
cut-off «,

Pee= D el (17)

§€D], |z Z2a

gives [11,17] a good description of the diffraction spectrum in the case of certain quasicrystals
if the terms are interpreted as describing spots with an intensity proportiopalio
Let {wy, w5, ..., w,} be a basis of the lattic®*, A* be the set of all the pairs
A, A) € R —{0}) x [—1, 1] for which the entries of the matrix dfz, + A’ in the basis
{w], w5, ..., w,} are integers, and let

I* = {A| there exists.” € [—1, 1] such thai(x, ") € A*}.
Choosingx € (0, co) such that

Q = (5 € Valllk(=§)| > 0} # 0 (18)
from theorem 1 we get the following result.
Theorem 3. If (A, 1)) € A* andv € Dj are such that

Ay + 07 C Qy (19)
then

A'R" —R":x+—> Ax =Ax +v (20)
is a self-similarity of the support

A(K), = {§ € Dillcs| > o} (21)
of p¢ ., thatis,

£ e AK): => A& = A& +v € AK)E. (22)

Example. Lett = (1 ++/5)/2, 7" = (1 — +/5)/2, and let us consider the cut and project
scheme

7 7
LR 2 Voo (x1,x2) = x2

U (23)
D

Wherevl =R = {(xl, O)|X1 € R}, Vo=R= {(O, X2)|XZ € R}, and

x1 < (x1,x2) V1

D={(j+mt, j+mt)|jmeZ} =7Z1,1) +Z(t,1).
In this caseD1 = {(j +mt,0) | jym € Z } =7Z+Zt,and(j + mt)® = j + mt’. The vectors
w1 = (1,1) andw, = (7, /) form a basis ofD, and the matrices of; andn> in the basis
{wl, w2} are

71 = M((5 — v/5)/10, (5 ++/5)/10, v/5/5)

72 = M((5++/5)/10, (5— +/5)/10, —/5/5)
where

—(* VY
./\/l(oz,ﬂ,y)—(y ﬂ)'
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Since the matrix of1 + A/, in the basiqw;, w,} has integer entries if and only if
— +
ks V5 + )JS V5 €

Jj= Z
10 10
5 5
m:ki—k’iez
5 5
+ p—
=A5\/§+X5 Jéez
10 10

we get
I={j+mrt|j,meZ, j+mt e[-1,1]}.
Letr € (0, 00), and let
A([—r,r]) ={j +mt € D1|j +mt’ € [-r,r]}

be the model set corresponding to the wind&w= [—r, r]. For anyA € 7 and anyv € Dy
such thafv®| < (1 — |A°])r the transformation

R— R:x+—= Ax+v

is a self-similarity ofA([—r, r]).
The dual lattice oD is D* = Zw/ + Zwj, where

;L 1 +1 ;L T -7
=Ty T2 2=\ Tr2 T+2
and (V1 @ V,, D*) is also a cut and project scheme. Since the matrices aindz, in the
basis{w;, wy} coincide with the corresponding matrices in the bésis w,}, it follows that
I =1.
In this case, the Fourier transfo&[L,._r] of Ij_,,is

A sin(2rré&)
1 —rr =
=1 () xE
and the maximal value ofl;_, 1(€)| is 2r = lim¢_o|1_,,(¢). For anyg in a certain

neighbourhood of 0 and = i[_,,,] (B) we getQ2, = [—8, B]. In this case, any € Z* is a
scaling factor of the diffraction spectrum af([—r, r]) if we take into consideration only the
spotst € D; with |c:| > .

We think that similar results can be obtained for the three-dimensional Penrose tiling [9],
and in the case of many other known patterns.

3. G-model sets

In this section we present the constructiorGefmodel sets. Let
{g ' E, — E,lg € G}

be an orthogonaR-irreducible faithful representation of a finite grodp in the usualn-
dimensional Euclidean spad&, = (R”, (,)), and letS c E, be a finite non-empty set
which does not contain the null vector. Any finite union of orbit<ofs called aG cluster.
Particularly,

C= UGr U U G(—r)={e1, er,...,ex, —e1,—e€2,...,—e} (24)

res resS
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is the G-cluster symmetric with respect to the origin generated byror eactg € G, there
exist the numbers;, s5,...,sf € {—1; 1} and a permutation of the sgt, 2, ..., k} also
denoted by such that

ge;j = sif(j)eg(j) (25)
foranyj e {1,2,...,k}.
If we start from the representation
T t—1 1 -1 1 -1 1 T )

1
a(x,y,z)=<§x—§y+ 5 Z,§x+ 5 y—iz,Tx+§y+§z

b(xs ) Z) = (_-xv =) Z)

of the icosahedral group = 235 = (a, bla® = b® = (ab)® = ¢) and the sef = {(1, 0, 1)}
thenC = {61, €2,...,66, —€1, —€2,..., —66}, where

e1=1(1,0,7) e3=(1,1,0) es =(—1,0,1)

(26)

(27)
€2 = (f, _1’ O) €4 = (07 T, 1) €6 = (07 -1, 1)
Forg = a andg = b relation (25) can be written as
a= <€1 €2 €3 €4 ¢€5 65) b= <€1 (5] e3 €4 €5 66) (28)
€1 €3 €4 €5 € €2 €5 —€2 —€3 € €1 e4

and the corresponding-model set is the usual three-dimensional Penrose pattern [9]. Many
other concrete illustrations of our results can be found in [7, 8].

Theorem 4 ([6-8]). The groupG can be identified with the group of permutations
{C— C:r— grig € G}
and the formula
g(xe, ..o, xk) = (S5 Xg101), S5Xg1(2)s - -+, SEXg-101)) (29)
defines an orthogonal representation®fn E;.
Theorem 5 ([6—8]). The subspaces
By = {((r,en), (rea), ..., (re)lr € By (30)

k
> xiei = 0} (31)
i=1

of E; are G-invariant, orthogonal, and;, = E} & E;.

Ep = {(xlsxz,---,xk) € g

Letu; =(1,0,0,...,0),u>,=(0,1,0,...,0),...,u, =(0,...,0,1) be the canonical
basis ofE,,, and let

ej =(ej1,€j2,...,€jn) (32)
foranyj e {1,2,...,k}.
Theorem 6 ([6-8]). The vectors, vs, ..., v, where

v, = (ey, €, . .., €ki) (33)
form an orthogonal basis &}, and

Vil = llvall = - = llv, . (34)
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The orthonormal basis @ corresponding tgv}, v, .. ., v,} is formed by the vectors
vy = 0v] V2 = QV5...V, = QU (35)
wherepo = 1/||vy]l.
Theorem 7 ([6-8]). The representation a¥ in ]E,‘(‘ is equivalent to the representation @fin
E,, and the isomorphism
E:E, — E] & =(o(re olred.....0lre)) (36)
having the propertygu; = v; allows us to identify the two spaces.

Theorem 8 ([6-8]). The mappingr! : B, — E,
k

k
Al .. x) = (922<el, €)X, ..., 0% Y ek, ei>x,-) (37)
i=1

i=1
is the orthogonal projector corresponding to the subsdEE;e
Theorem 9 ([6-8]). TheZ-module
L=kZ C By (38)
wherex = 1/p, is G-invariant, and in view of the identificatioB : E, —> ]E}l we have

k
rle=""TZe. (39)
i=1
Generally,
El & EeE = E
U (40)
L

wherer+ =1 — zll, is not a cut and project scheme since, generallyestricted tal is not
injective.
Theorem 10 ([10, 28]).AnyZ-moduleL C R’ is the direct sum of a latticg,; of rankd and

aZ-moduleL, dense in a vector subspace of dimensipwhered + s is the dimension of the
subspace generated tyin R’.

TheZ-module£* = 71 (L) is the direct sunCt = £} & £7 of a lattice; of rankd
and aZ-module£; dense in a subspade C E;- of dimensions, whered +s = dimE;-. In
this decomposition the spadg is uniquely determined.

Theorem 11. The spacé/; is a G-invariant subspace di;’.

Proof. We have to prove thay € Vo, = g(y) € V,, foranyg € G. Since
rt(g(x)) = g(mtx) for anyx e E, it follows that £+ is a G-invariant Z-module. If
y € V» then there exists a sequenog);>o C £+ such thaty = lim;_, . x;. Sinceg is an
isometry ang (x;) € £+ foranyj € N, it follows thatg(y) = lim ;.. g(x;) € V2. ]

This theorem shows that a decomposition of the representatiaq iof E;- into R-
irreducible representations may help us to determine the sub&pace
LetV, = E/Ll and let

W = {x € E}|(x, y) = 0 foranyy € V,} (41)
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be the orthogonal o¥, in E;-. For eachxy € Ey there existt! € Vi, x’ € V, andx” € W
uniquely determined such that= x! + x’ + x”. The mappings

7 By — Ep: x> x 7" By — Ep: x> x”

are the orthogonal projectors corresponding to the subspaeeslW. Lete; = (1,0, ..., 0),
& =1(0,1,0,...,0),...,5 = (0,0,...,0,1) be the canonical basis .

Theorem 12. The matrix ofr” in the basigey, &2, .. ., &} has rational entries.
Proof. Let
d]_]_ d12 . dlk
= dyy dyp ... dxn
dir di2 ... dik
be the matrix ofr” in the basigey, e, ..., &}, thatis,n"e; = Zf.‘zl dijei. The matrixre” is
symmetric

d,‘j = (7‘[”8(,‘, 8,‘) = (JTN:S‘_]‘,JTN:S‘,‘> = <8j, 7'[”8,‘) = dj,‘.

We start by proving that the ratio of any two non-zero entries lying on the same columin of
is a rational number. In order to simplify the notations we prove that our statement is valid for
the first column, but our arguments work for any column.

Let us suppose that the first column contains @#inearly independent entries. If this
number is larger then the proof is similar. In this case, there exisQsinearly independent

numberso andv and the integerg, a1, B1, - . . , &, B such that
djy = ﬁa) + &v
14 14

foranyj e {1,2,...,k}.
From the relatiomr” o 7" = " we get

di1 = (d1)? + (d)? + - - - + (dr1)?
whenced;; # 0. Thus, we can assume that= ydi;. It follows:
w \%
n'ep = —(e1+apga+ - Fager) ¥ —(Boga ¥ + Prer). (42)
14 Y
The equalityr” o 77 = = allows us to write this relation in the form
" w " v "
wrer = —7 (e1tapex - toger) t —m (Baga -+ Brex)
14 14
or
(w—y)n"er+wn"(ae2+ - -+ ager) + v (Bagz + - - + Prer) = 0.

Let us first consider the case when the numbersy, « andv areQ-linearly independent.
In view of Kronecker’s theorem ([24], p 286), for ady> 0 there exist a real humberand
the integers)s, 12, n3 such that

lt(w—y) —m| <8 [tw — 2| <8 [ty —n3| < 6.
This means that there exists the vector

y =«k[ne1+naaoer+ - +apsr) +n3(foso+-- -+ frey)] € £
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such that

7"yl =kl (n1 — t(w — y))w"e1+ (N2 — tw)m”" (a2e2 + - - - + agey)
+(nz — V)" (Bagz + - -+ + Brew) ||
S kS| e|l + I (oog2 + - - - +axg) | + I (Bog2 + - - - + Bre) ).

Sincex”(L£) c W is a discrete set, we must hawéy = 0 for anys small enough. This is
possible only if

n"e1=0
7'[”(0{282 +..-tope) =0 (43)
7" (Boga + -+ + Prex) = 0.

Since (43) contradicts (42), the numbers- v, w, v cannot be&-linearly independent. There
exist the integersg, & andd such that

e 3
— =2+ 2
w V4 9 w 9 v
and hence,
o (Cey +Oarer + - - +Oaey) v (Eey + OBoso + - - +0Brer) = 0.

In view of Kronecker’s theorem, for any > 0, there exist a real numberand the integers
U1, M2, such that

ltw — pal <68 [tv — po| < 6.
These relations show that there exists

y =«[pn1(Cer+Oazer +- - +Ooper) + pa(er +0foea +- - +0fier)] € L
such that
7"yl < k8" (o1 +Oazer + - -+ Oayer) || + 7" (Eer + OB2ez + - - - +OBrer) |I).

Sincer”(L£) C W is a discrete set, we must hawéy = O for any$ small enough. This is
only possible if

7"(cer +Oarer+- - +0oye) =0
n"(Ee1+0B2ea + - +0frer) = 0.
If we multiply scalarly the second relation by we get
Ew +0fz(waz +vf2) + - - + 0B (wa +vB) =0
that is,
w(E +0azfp + -+ Oarfi) +Ov[(B2)° + -+ + (B)?] = 0.
Sincew andv areQ-linearly independent, we obtain
(B2)*+---+(B)* =0
that is,
po=pPs=---=pH =0
It follows thatd;; = ajw foranyj e {1, 2, ..., k}, and this result contradicts the assumption
that the first column contains tw@-linearly independent entries. Hence, the ratio of any two
non-zero entries lying on the same column is a rational number. Since our matrix is symmetric,

the ratio of any two non-zero entries lying on the same row is also a rational number. This is
possible only ifr” is the product of a matrix with rational entrids and a real numbew, that
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is, 7" = wM. The equalityr” o 7”7 = 7" shows that there exists a rational numbesuch

thatw? = aw, and hence is also a rational number. a
Let
V=Vi®eV, D=pL) (44)
where
piE — Epix > xl+yx (45)
and let
TV —Vixr xl TV —Vix—x. (46)

Theorem 13. For any G clusterC the collection of spaces and mappings

Vi <ﬂ—1 ViV, £> Vs
U 47
D

is a cut and project scheme. In addition,

k
m(D) =Y Ze;. (48)
j=1

Proof. We have to prove thaP is a lattice inV, the restriction ofr; to D is injective, and
m2(D) is dense inV,.

Sincep = 1 — " has rational entries and its rank coincides with the dimensian, af
follows thatD = p(£) is a lattice inV.

From the relationt,(D) = n’/(p(L)) = #'(L£) and the definition of,, it follows that
m2(D) is dense inv,.

It remains to prove that; restricted taD is injective. For this it is sufficient to prove that
Ker(m1|p) = {0} and this is equivalent to proving that Ker'|;) ¢ W. We have to analyse
the case Ketr!|;) # {0}. Letx € £ — {0} be such thatr|x = 0. The relation Kerr | = E}-
shows that € £LNE;". Foranyy € £ the pointS(z1, z2, . . ., zx) € E; satisfying the equation

x1(z1 —y1) txo(z2 —y2) +- -+ xp(zk — ) =0 (49)

form the hyperplanéd, orthogonal tox passing througly. The hyperplang?, intersects
the one-dimensional subspad®& = {ax|a € R} at a point corresponding ta =
oy -+ xn) /(e + -+ x2) = (x, ) /x|
Since(x, y) € «?Z, the minimal distance between two distinct hyperplanes of the family

of parallel hyperplane§H, | y € L} is «?/|x||. The unionH = Uyd H, of hyperplanes
orthogonal taxr € E} contains theZ-module£* = =+ (£). We prove thatt € W, since in
the contrary casé/, N £ cannot be dense iW,. Indeed, assuming thatg W there exists
z € Vo such thatx, z) # 0. In this case the one-dimensional subspgace= {az|a € R} of
V, is not contained irH. The intersectiorH N Rz is a discrete set, and for anye Rz — H
the distanced betweeru and H is strictly positive, and hence the open ball of centrand
radiuss does not contain any element6f. It remains that € W. ]

A model set obtained by using a cut and project schérpe® V-, D) defined by &G cluster
is called aG-model set

Example. The relations

a(x,y) = (cx —sy,sx +cy) b(x,y) = (x,—y) (50)
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wherec = cogn/5) = (1 ++/5)/4, s = sin(t/5) = v/5— +/5/(2+/2) define the usual
two-dimensional representation of the dihedral group

Do = (a, bla*® = b? = (ab)? = ¢).
Let¢' = cos27/5) = (V5 — 1)/4, s’ = sin2r/5) = v/5++/5/(2v/2). The Dyo-cluster
generated by the sét= {(1, 0)}

C = Dlo(ly O) = {ela €2, €3, €4, €5, —€1, —€2, —€3, —€4, _65}
wheree; = (1,0), ex = (¢/,5'), e3 = (—c, ), es = (—c, —s), e5 = (¢’, —s'), defines the
orthogonal representation

a(x1, X2, X3, X4, X5) = (—X3, —X4, —X5, —X1, —X2)

(51)
b(x1, x2, X3, X4, Xs) = (X1, X5, X4, X3, X2)

of D1 in Es.
The vectors; = 9(4, ¢/, —c, —c, '), v2 = 0(0, s/, 5, —s, —s'), wherep = /2/5, form
an orthonormal basis of thRp-invariant space
EL = {((r.e1). (re2). ... (r. es))|r € Ep} (52)
and the isometry (which is an isomorphism of representations)
EE, — Ell, ir = (o, e1), 0(r, e2), ..., 0(r es)) (53)

with the propertyz (1, 0) = v1, £(0, 1) = v, allows us to identify the two spaces.

In this case the orthogon&k- of ]E‘E‘, contains aDjg-invariant subspace, namely, the space
{(x1,x2,...,x5) € Eglxy = xo = --- = x5}. The spaceEg can be decomposed into an
orthogonal sum of tw@®;p-invariant subspaces. We shall denote the corresponding projectors
by ;- andry . The matrices of these projectors in the canonical badi afre

7l = M2, (vV5-1)/10, —(v/5+1)/10)
i = M(2, —(/5 +1/10, (+/5 — 1)/10) (54)
Ty =M 5 3)

where
«a By v B
B a B vy v
M, By)=|y B « B vy (55)
y v B a B
B v v B «

Letk = 1/p andlet = «Z°. The pair(Eﬂ,eB]El, L) is not a cut and project scheme since
nlx = 0foranyx = (x1, x2, ..., x5) € £ such thatr; = x, = - -- = x5. We use theorem 13
in order to obtain a cut and project scheme. In this case

Vi =E} Vo = B, V=vioV, W =EZ, (56)
p=nl+ni D= pL) mix =mlx Tox = mitx (57)
and
4
D= ZZU)I
j=1
where
4 1 1 1 1 1 4 1 1 1
wlz(g»l—g,l—g,—?—?) w2:(_§7§71_§71_§15_§) (58)
w3=(—§,—§,§,—§,—§) w4=(_§,—§,—§,§,—§)-
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From theorem 13 it follows thatVy, @ V>, D) is a cut and project scheme. Since the matrices
correspondingter; : V. —> V, w0 V —> Vinthe basiw;, wy, ws, ws} are

m = M'((5 — ¥/5)/10, (5 ++/5)/10, v/5/5)

7y = M'((5++/5)/10, (5 — v/5)/10, —+/5/5)

where
a y 0 -y
, 0 B v —v
M'(a, B, = 59
(@,B,7) v vy B 0 (59)
-y 0 vy «

the entries of the matrixz; + A/, are integers if and only if

15_\/§+X5+\/§

= ez
10 10
5+5 5-4./5
[ =X + 2 7
10 10 °©
V5 V5
A N cZ
m 5 56
It follows
R S e I/ T VA e Y-S
m=i=J -2 2 -2 2
whence
I ={j+mt|(j,m) e Z? j+mt e[-1,1]}. (61)

It depends on the window we choose if a certain elemefitisfor is not a scaling factor for a
Djio-model set defined by using the cut and project scheévaed Vs, D).
The dual lattice oD is D* = Y°%_, Zw,, where

w; =(1,0,0,0,-1) w, = (0,1,0,0,—-1)
wy = (0,0,1,0,-1) w, = (0,0,0,1, —1).

Since the matrices of, andz, in the basigw, wj, w;, w,} are

71 = M"((5—+/5)/10, (5 ++/5)/10, V/5/5)
75 = M"((5++/5)/10, (5 — +/5)/10, —+/5/5)

where
o 0 —y —y
" y B v O
M, B,y) = 62
(a,B,v) 0 v B (62)

-y —y O o

we getZ* = Z. An element ofZ* may be a scaling factor for the ‘bright’ part of the diffraction
spectrum of a model set defined by using the cut and project sctién@ V>, D) depending
on the window and the threshold of brightness we choose.
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4. Conclusions

In the case of any finite grou@ we can obtain, in an explicit way, an infinite number of
quasiperiodic patterns by using the infinite number of the correspor@imjusters. In

order to obtain a mathematical model for a real quasicrystal it is sufficient to determine
the corresponding symmetry group and to approximate the local structure by using a

G cluster. One can try to find some self-similarities of the model and to construct adapted
wavelets bases [3, 14] useful in the description of physical properties. The existing computer
programs for the cut and project method [32] allow one to compare the obtained model with
the experimental data. If the agreement is not acceptable one has the possibility to search for
a more suitabl& cluster describing the local structure.

A quasiperiodic pattern generated by mixing lattices derived from a dodecahedral
star and an icosahedral star was recently presented by Soma and Watanabe [31]. It is
obtained by projection from a 16-dimensional lattice. The family of two-shetlusters
Y{(a,a, ), (1,0, 7)} (the dodecahedroi(«, «, @) and the icosahedron(l, 0, 7), wherea
is a real positive parameter) defined by using the representation (26) of the icosahedral group
Y allows us to obtain a large class of similar patterns. They seem to be of interest for the
icosahedral quasicrystal modelling, but following the suggestions of the Janot—de Boissieu
model, a better choice seems to be the patterns defined by the family of thre-shedters
Y{(a,a,a), (1,0, 1), (B,0,0)} (a dodecahedron, an icosahedron and an icosidodecahedron)
depending on two real positive parameters. It is not the purpose of this paper to analyse these
concrete patterns.

A real quasicrystal contains several sorts of atoms and it is very difficult to obtain a
mathematical model describing the atomic positions. We think that our results offer the
mathematical basis for a possible new approach to this open problem.
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